A Simple Approach to the Perron-Frobenius Theory for Positive Operators on General Partially-Ordered Finite-Dimensional Linear Spaces41
نویسندگان
چکیده
This paper presents simple proofs of the principal results of the Perron-Frobenius theory for linear mappings on finite-dimensional spaces which are nonnegative relative to a general partial ordering on the space. The principal tool for these proofs is an application of the theory of norms in finite dimensions to the study of order inequalities of the form Ax S ax, x è 0 where A ^ 0. This approach also permits the derivation of various inclusion and comparison theorems.
منابع مشابه
Compact weighted Frobenius-Perron operators and their spectra
In this note we characterize the compact weighted Frobenius-Perron operator $p$ on $L^1(Sigma)$ and determine their spectra. We also show that every weakly compact weighted Frobenius-Perron operator on $L^1(Sigma)$ is compact.
متن کاملPositive and Z-operators on closed convex cones
Let K be a closed convex cone with dual K∗ in a finite-dimensional real Hilbert space V . A positive operator on K is a linear operator L on V such that L (K) ⊆ K. Positive operators generalize the nonnegative matrices and are essential to the Perron-Frobenius theory. We say that L is a Z-operator on K if 〈L (x), s〉 ≤ 0 for all (x, s) ∈ K ×K such that 〈x, s〉 = 0. The Z-operators are generalizat...
متن کاملPERRON-FROBENIUS THEORY ON THE NUMERICAL RANGE FOR SOME CLASSES OF REAL MATRICES
We give further results for Perron-Frobenius theory on the numericalrange of real matrices and some other results generalized from nonnegative matricesto real matrices. We indicate two techniques for establishing the main theorem ofPerron and Frobenius on the numerical range. In the rst method, we use acorresponding version of Wielandt's lemma. The second technique involves graphtheory.
متن کاملSome results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010